Thursday, 1 March 2018

Voodoo Labs Amp Selector

 This is a 2 input, 4 output amp selector and A/B switch. One guitar can drive 4 isolated outputs, all with their own volume controls and ground lifts. There is some preset save/recall functionality, so I am expecting a microcontroller in here somewhere. This is exactly the sort of thing I would have loved to play with when I was renting a practice room and had access to lots of amps, but it will probably just be sold on nowadays.


Main PCB
No surprises on the insides - there is an P87LPC764 MCU reading switches and turning JFET switches on and off. A MAX1044 provides a -9V supply. The transformers are 6 pin devices with any labels or markings removed. There is one OPA2134 dual opamp, and a 24C01 serial EEPROM for presets.

Hacked in parts at the power input.
The back of the PCB has some factory bodges/mods at the power input - there is a series resistor and a capacitor added to the MAX1044 input.

The digital side seemed to work, everything lit up and it did switch signals, but there was lots of bleed between outputs and the volume was quite weak.

I know from experience that a MAX1044 will only tolerate ~10V input before dying, so I looked there first. The inverted voltage was measuring less than -1V. I desoldered the MAX1044 and replaced it - no change. There is a zener diode at the input pin which should limit the input voltage, I lifted this part out and now I had -8V and a working pedal.

Replaced MAX1044 (pictured here sitting crooked in a socket) and lifted diode D10
This diode was a 1n5239b (9.1V 0.5W zener) so I replaced it with a 1W part I had at hand. Now the negative voltage was pulled low again! It turned out that the cap across the zener that was added to the packside was leaking. It still measured 2.2uF but had ESR >5 ohm - this looks like a dipped tantulum part. I replaced with a similar electrolytic. It's not even technically needed, the cap is just stabilising the 9.1V zener clamp when it's conducting.

TC Electronics Nova Drive NDR-1

Programmable overdrive & distortion from TC Electronics. All overdrive/distortion parameters are controlled digitally, so presets can be saved and recalled, the order of the two circuits can be changed, they can be run in series or in parallel. All of this can be triggered by MIDI.


 TC did a Nova series of pedals and multi-effects units, but I don't think they were all built around a common digital design (like the Line 6 4x4 series). TC stuff is interesting as they have a history of high quality and targeting high-end markets and they tend to use fairly modern designs and parts. Unfortunately they don't seem to release much information or contract out any repair services, so I have not come across any modern TC Electronics schematics, either official or leaked.
TC were sold to Behringer in 2015 and their latest range of pedals look to be more standard stuff, a bit watered-down compared to the Nova series. I'll reserve judgement until I see one.
This series used a 12V power supply for some reason (why not 9V, like everything else?)
This Nova Drive started up but only passed a signal in bypass mode. The LED display and indicators did react to the knobs and to button presses, which at least meant that the digital section is working and the problem was likely in the analog end.

Top PCB (digital)
The build quality is really nice, they use a folded and tapped sheet metal chassis instead of cast box. There are two PCBs inside, the first is a "mezzanine" board with the encoders, buttons and displays. There is an Atmel ATmega168 and some '595 and '165 shift registers for digital IO. I'm pretty sure the ATmega is reading out pots and buttons and controlling something on another PCB to vary the effect parameters, as well as driving the LED displays and responding to MIDI commands. I would guess that this top PCB is probably very similar across all the Nova pedals. I am assuming the ATmega has some code-protection so I haven't tried desoldering and dumping it.

Lower PCB (analog)

The bottom PCB fills the whole enclosure - it has a bunch of opamps (presumably the analog overdrive and distortion circuits), DG441D quad analog switch ICs, switching power supplies, the MIDI optoisolator, a relay and a Cirrus CS3308. The CS3308 is a cool part, it's an 8-channel digitally programmable volume control. Presumably each channel is mapped to one encoder (4 knobs for overdrive and 4 for distortion) and the ATmega sets the levels over SPI or I2C. TC have used the +-5V version with 123 dB of dynamic range, which is kind of ludicrous for a distortion pedal.

Lower PCB, backside

U3 generates -12V from 12V input

All parts on this side are glued in placed before soldering

The bottom PCB is very parts-dense, but helpfully there are test points for all supply voltages. I found that -12V was reading very low and so all of the negative supplies that are derived from -12V were also missing. -12V appeared to come from a switching supply controlled by a CS51411 on the underside of the PCB, the circuit looks liked a close match to the inverting converter in the datasheet (Fig 25). The inductor was getting burning hot, so the switching IC was a pretty likely culprit. TC used a double sided load for this PCB, and parts on the underside are wave-soldered instead of reflowed, which means they are all held in place with a dot of red epoxy. Desoldering the IC took a lot more heat and force than I'm used to but it did eventually lift off. It still didn't work with a new chip, solid 12V DC across the inductor with no switching happening, which explains the heating. The SYNC pin did have a ~340 kHz square wave - I don't know if this was also present on the original chip. The huge number of test points on the back of this larger PCB suggests TC use some kind of bed-of-nails jig for testing during manufacturing.

Around this time I held my hand over the board when powered up and found another hot spot. One of the two DG441D switch ICs was also running hot, so I desoldered it. This part does run off +12V and -12V rails, so it may have killed the -12V supply when it failed.

There is another switching power supply using a L5970D controller - this one is generating 3.3V for the digital parts and was working correctly.

As I knew there may have been a short from -12V to ground or some other supply, I wanted to see if I could completely isolate the CS51411 from the -12V supply and use an external power supply to provide -12V. I removed the output capacitor and the inductor. Using an bench supply wired to the board and providing -12V, the pedal worked. Surprisingly, it pulled over 100 mA which seemed very high for some opamps and switch ICs so there may have been some other damaged part on that -12V rail.

The series/parallel switching did not work, only series mode passed a wet signal. This confirms the DG441Ds are routing the signals into series or parallel combinations, one of them was still missing. A new IC here restored all modes.

The CS51411's inductor measured 33uH out of circuit which seemed correct. I decided to try swapping it with this part, which fixed all the power supply issues. I am guessing that the old inductor got so hot that it reached it's curie temperature and it's magnetic properties changed (??) The new part runs cool. Looking again at the CS3308 datasheet shows it pulls 36 - 50 mA on both positive and negative analog supplies (!), which explains the high power consumption seen earlier, and why the pedal originally shipped with a 12V supply rated for 400 mA. This chip does run noticeably warm, but the power consumption matches the datasheet figures. I can only guess that power consumption is targeted  high to help lower noise and increase dynamic range. For a distortion pedal a low-power version with poorer specs would probably be a much better fit. The pedal will actually work with 9V input, and will generate a -9V supply instead, but will need a beefier supply than is usually seen on pedalboards.

All good again.
I broke the ribbon cable connecting the two boards when I was working on this. I just replaced it with individual wires - I would really like a tool that strips ribbon cable so I could just buy a small reel, if anyone knows of one please let me know.