Tuesday, 14 November 2017

Digitech PDS 1000 & 2000 Repairs

I am fond of the Dod/Digitech PDS series delays. On paper there's nothing too amazing - mid 1980s 8-bit delays with 1, 2 or 8 (if you can afford the PDS 8000) second maximum delay times. There are two features that win me over.

The first is the "Infinite Repeat" footswitch that locks the delay into a repeating loop. The loop can be pitch-shifted by changing the delay time, and when Infinite Repeats is turned off the delayed signal trails out like normal again. This is like playing with the shittiest looper and is a lot of fun, and surprisingly a lot of modern delays & loopers don't (or can't) do this. Some will repeat indefinitely without oscillating if the feedback is maxed (Boss DD series) but it's nice to have it on a dedicated switch, with feedback control available and ready for switching back to "normal" use. A surprising amount of 90s and early 00s delays can't smoothly pitch-shift recorded audio when playing with the delay times, and glitch or "jump" somewhere through the pot travel.

The second win is the internal design. The expected parts for a simple delay are all there - an ADC, a DAC, some memory and some logic gluing things together - but there are no custom ASICs, microcontrollers or programmable devices at all. Everything is done with standard CMOS logic. These delays could be built from scratch with new parts today, and they are very repairable. This is a little bit of a backwards approach for a 1985 era product - at this point Boss had already released the DD2 & DD3a delay pedals and they used the same ASIC from the Roland rackmount digital delays. This could have been a cultural difference, as Japanese manufacturers seemed to prefer going for custom ICs and offsetting the cost against using them in lots of products (Yamaha have also done this). Digitech (or DOD at the time) may have to bring the series to market quickly, which could have forced them to use off-the-shelf parts. Whatever the reason, nearly ever part can be sourced pretty easily, unlike finding a replacement Boss controller IC from 1985 (good luck).

I repaired 4 of these delays recently. Here is a braindump:

PDS 2000 #1

All of the pedals in this series came with snap-in plastic battery doors that are not held captive by the enclosure (i.e. they are removable). This means they get lost, and I have never actually seen one.

This PDS 2000 (mine) was fairly easy to deal with. It's a 2 second delay that adds sampling modes that can trigger the delay sample by a footswitch or an external trigger signal. It had some broken wires in the harness between the PCB and jacks/switches. I think this is due to using the pedal with a battery but without a battery door - the weight of the battery pulls on the wiring if it's free to swing around on the end of the battery clip. This just needed some soldering to bring it back.

The footswitches were also unreliable, so I replaced the microswitches. More on that below.

In an unusual move, DOD actually sprang for a silkscreen print on this PCB. Schematics are available online but can be hard to match them with a PCB when there is no silkscreen and no part designators.

PDS 1000 #1



This one was partially working when I got it. The output jack wouldn't hold a cable in, the footswitches rarely worked and the delay length maxed out about 75% of the way through the pot's travel - but it did work as a delay. I replaced the footswitches and bent the retaining lug on the output jack (I may go back and replace this) so that it was a usable effect.

I have never seen a PDS 1000 schematic, but the PDS 1002 2 second version looks like it's very similar. The delay time control circuit is shared across the earlier series. Delay time is varied by changing the frequency of the main clock signal that shifts digital samples into and out of DRAM memory. Faster clock frequencies shift data faster and give shorter delays. Delay time is adjusted by 3(!) potentiometers, the delay time pot on the front of the enclosure, a trimpot that adjusts range of the of the main delay time pot, and a final trimpot that globally adjusts clock frequency by small amounts. You don't really get a very wide range of adjustment so trying to get longer delays by tweaking pots might not work too well.

Tweaking these delay pots brought the delay back to 1 second and adjustable through the full range of the delay pot.

PDS 2000 #2

This is the only pedal of the 4 that didn 't power up at all. None of the logic chips had any sensible voltage at the VCC pins, but the opamps were getting 9V. There is a 78L05 to drop the 9-10V input down to power all the logic chips, and this has a JFET soft-start circuit that ramps up the 5V power supply, presumably to protect the digital chips from a loose or intermittent power cable. I replaced the timing cap with no luck, then swapped the FET for a new J201 and it powered up.

This a soft-start for the 9V supply on the PDS1002. The 2000 has something similar.

Everything seemed to work, except that I couldn't change delay ranges, it was stuck on the longest range (2 seconds). The sampling modes also weren't quite right, trying to trigger samples would switch the pedal into bypass mode or sometimes do nothing at all. I traced signals back from the delay range switch to a 74HC04 hex inverter, which looked dead. I swapped this chip over from the other 2000 and it worked. I ordered a new 74HC04 and got two working pedals.

This one also was not quite a 2 second delay so I did some pot tweaking. Unfortunately I managed to slip with an oscilloscope probe and shorted two pins on the DRAM chip, and killed an input pin. I replaced with a TMS4256 DRAM from eBay - works fine. With the new chip the delay rates could be carefully dialled in to 2 seconds pretty quickly.

PDS 1000 #2


This was in the worst condition. I got this in a box of failed repairs from a music store in the US some years ago and never did a lot with it until now. Someone had already taken a crack at fixing it, it was missing knobs and a back panel. Two of the pots were broken, the bodies would wobble freely against the legs as if they had detached internally. The 1Meg trimmer for clock frequency was also broken off.

I replaced the trimmer and set it to the middle of the it's range, based on how the other 1000 was set. The PCB mount pots were a little harder, DOD use Alpha pots marked "W" which I don't think are actually W taper (W taper is logarithmic for half the travel, then reverse log for the other half). I replaced with long-leg alpha pots. The replacements are a little taller than the originals, so I cut the legs a little shorter and soldered some bus bar to them, then soldered the bus wire into the PCB. This actually worked pretty well, but replacing these pots and running wires to the PCB is probably a better long-term solution.

After replacing pots I found that delay time wasn't working because of broken trace, I ran some Kynar wire to restore it. The mix knob didn't work and it was stuck at 100% wet - this turned out to be another bad JFET.

At this point things appeared to work again, except the delay was very distorted and noisy. I messed around with compounder trimpot as I thought that may be distorting - no improvement. Eventually I realised that bad memory chips would give corrupted repeats which would probably sound like distortion, so I swapped the DRAM from the other PDS 1000 and it worked. I ordered some replacement DRAM (I used MK4564) and they worked just fine.

Adjusting delay time

There may be an "official" method for adjusting maximum delay length using a testpoint on the PCB but without a service manual I've come up with my own.

The capacity of DRAM can be looked up from the P/N and the nominal maximum delay in seconds is known. My reasoning is that DRAM should be completely filled in this time, so I probe the DRAM with an oscilloscope and adjust delay length until the frequency of data in and out matches the DRAM size divided by nominal delay length in seconds.

For the 2000 the DRAM is 262144 memory locations and max delay is 2 seconds, so I want data to be going in and out of memory at around 262144/2 times per second or 131072 Hz when the delay pot is all the way up. This can be measured from the DRAM Write Enable pin, and probably from the Data in and Data out pins as well. Most of the tweaking is done on the lower global clock frequency trim, usually after making sure the delay pot is working throughout it's whole range. Sometimes I had to iterate and go back and forth between the two sets of pots. Adjustment on trimpots is fairly coarse, so this can't be dialled with really great precision but I find it much easier than trying to listen to the delay and sync to a stopwatch or something similar.

Modding for more delay time

There are online discussions about modifying these pedals for longer delay times that usually involve tweaking the delay pots away from nominal positions to get longer delays. I think this will only work well for very lo-fi sounds, as the sample rate will get much lower and aliasing effects will get worse.

The delay loop in the PDS series is basically some 4040 ripple counters counting through memory addresses and resetting when the end of memory is reached. A better approach to extending delay time is replacing DRAM with a larger IC (or multiple ICs) and adjusting the counter reset logic to address the larger memory. I have some spare DRAM for both of these pedals so I would like to try this.

I haven't seen a schematic for the PDS 8000 (8 second delay). I would like to see how this was implemented, as it should have 4x the memory of the PDS 2000. Extending the 2000 to 8 seconds may be possible depending on how extensive the differences are.

The best picture I can find online shows a single 18 pin (not 16 pin) IC, but the label isn't legible. Presumably it's a 1Mbit x 1 DRAM.

Please let me know if you have a PDS 8000 schematic or high-resolution board shots.

There is a PDS 20/20 delay schematic available (http://www.experimentalistsanonymous.com/diy/Schematics/Delay%20Echo%20and%20Samplers/Digitech%20PDS2020.pdf) which uses 2 4464 DRAMs, which is twice the memory of the PDS 2000 but still only does a 2 second delay. America's Pedal has a catalog for the PDS series which explains why - the 20/20 has a delay signal bandwidth of 16 kHz, the rest of the series only has 7 kHz except for the PDS 1700. I am guessing the higher sample rate is for the chorus/flanger modes where really short delays are needed.


Dod used a fairly cheap mechanical design for actuating footswitch buttons on a small PCB. The plastic foot panels are cantilevered and are returned to their neutral position by a spring at the "fixed" end, not the free end which would make more sense. There is also no real end-stop to limit the force on the footswitch - if you stomp hard you will crush the button. This is problematic as most players will stomp harder if the switch doesn't work, so once they start to fail they deteriorate quickly.

There is advice online on adjusting spring tension to get a pedal to switch more reliably. Don't bother. If a DOD pedal does not switch every time, just replace the 10mm button on the PCB. They are very cheap and should last another decade of use. Play with the mounting hardware only if the levers aren't rotating correctly.


  1. Please send me your email to maneco gmail dot com and i can send you the pds 8000 schematic

    1. Fantastic, thank you. My email is falseelectronics@gmail.com

  2. Jawee CNC servo amplifier, best CNC servo amplifier partner in Asia-Pacific region.

  3. Hey i got sone issues with my pds 1002. Ja zehre a Chance that i could send oh to you for repair? Or do you have an idea where i could Let oh repair?

  4. Hi, This 2 second delay is a ton of fun! Unfortunately my "Mix" Pot snapped off a couple a months ago and I lost it. Do you know where I can reorder it and which exactly to get? I am pretty noob at this but I know I can resolder it... Thanks!

  5. Hi, I'm writing to you from Argentina, you know I have the pds 2000 and the delay does not work, do you know what the problem may be? saludos!

    1. Do you have access to a multimeter/voltmeter? I would start by checking the 5V power supply.

  6. Hi, Help... i've recapped my PDS2000 it wasn't working at all, now its going, the manual settings seem good but the sampler part seems to only get less than 1/2 seconds of sample can i get any info on the adjustments of this?

  7. Hi, no sound from my PSA1002. The two lights work when the pedals are pressed. I’ve taken it apart and cleaned it up, but no luck. All wires seem to be OK. I’ve even tried different guitars. This happens every time I have it repaired and then put it in long term storage. Then I try using it and no sound. Do you know a good repair outfit I could use. Thanks.